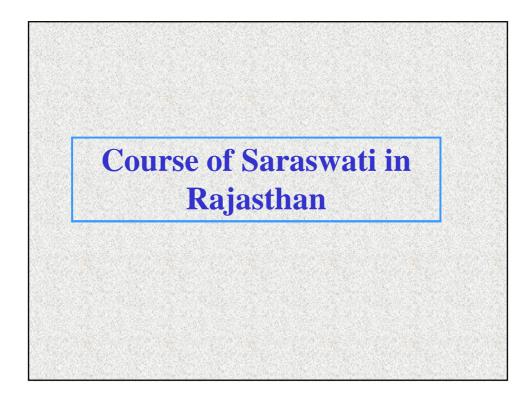
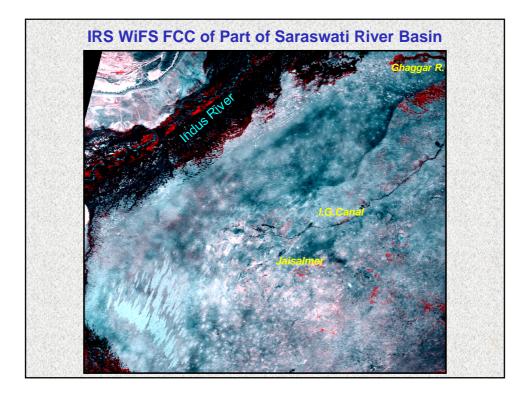

Himalayan Rivers

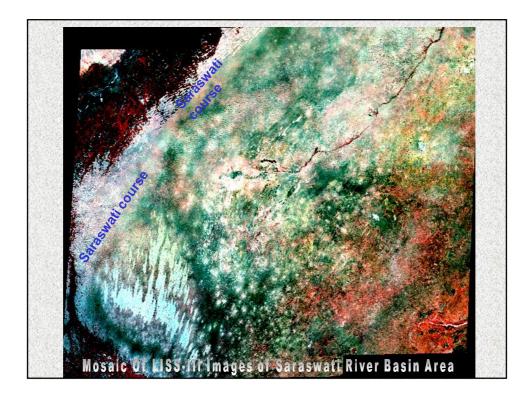
Himalayan Rivers are typical examples of antecedent drainages which formed during Quaternary period. Important Rivers of the NW Himalaya are:

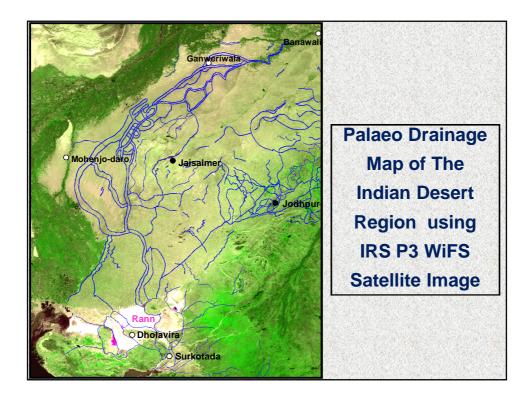
- Indus River It originates from a glacier near Bokhar Chu in Tibetan region at an altitude of 4164m in Kailash Mountain Range.
- Sutlej River It originates from Rakas Lake at an altitude of 4555m in Tibet and is connected with Man Sarovar Lake by a stream.
- **3. Ganga River** It originates at Gangotri glacier near Gomukh in Garhwal Himalayas in Uttarakhand at an altitude of 3,900m in the central highlands.
- **4. Yamuna River** It rises at Yamunotri Glacier at an altitude of 3316m on Bandarpunch range and enters the Ganga plain.

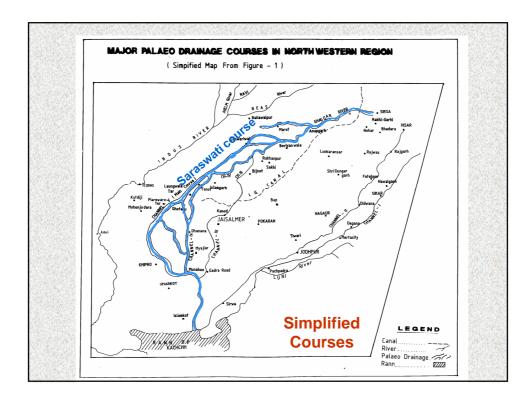
The **Saraswati River** was fed by melt from Himalayan glaciers, after the receding of the last ice age during 10,000 BP.

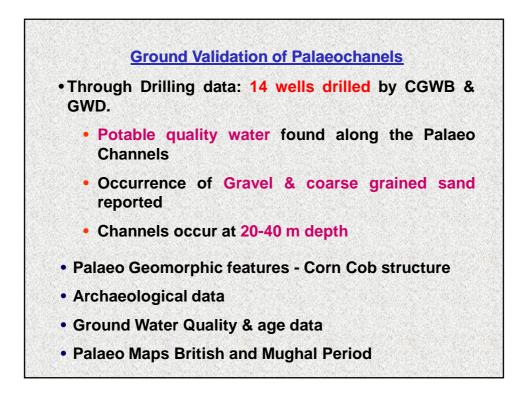


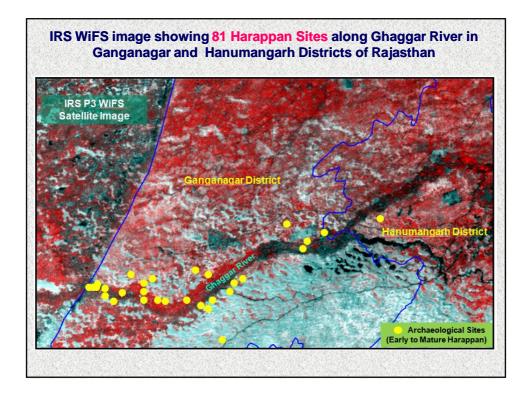


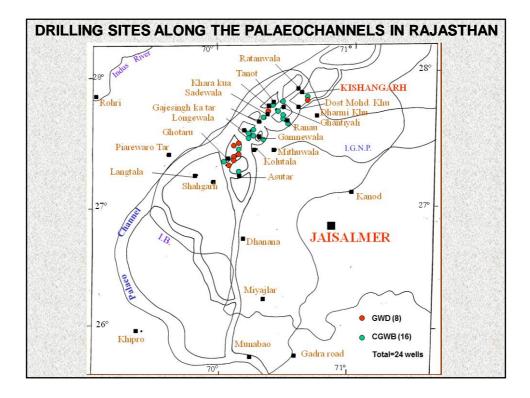

Remote Sensing Techniques Used for Delineating Palaeochannels

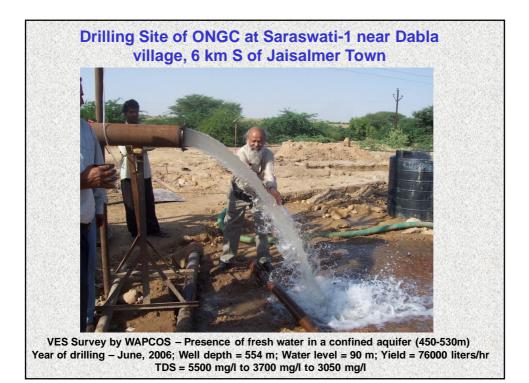

Palaeochannels are basically the old course of river channels which appears on the satellite image as serpentine drainage course with high moisture content (dark tone).

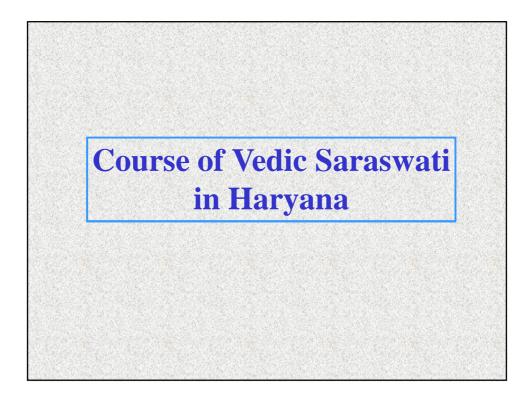

- "Piece-wise Histogram Stretching" technique has been used to enhance the palaeochannel signatures on the image. The feature enhancement is carried out by way of loading sub-scenes of 1k x 1k size on computer terminal in full resolution and improving the feature contrast by histogram stretching interactively.
- This technique has been found unique in enhancing palaeochannel details in the sandy as well as alluvial and vegetated areas.
- These palaeochannels also have been validated through collateral ground data such as geomorphic anomalies, drilling data (litholog) of tube wells, hydrological parameters (discharge and groundwater quality), age of ground water, archaeological data and published old maps.

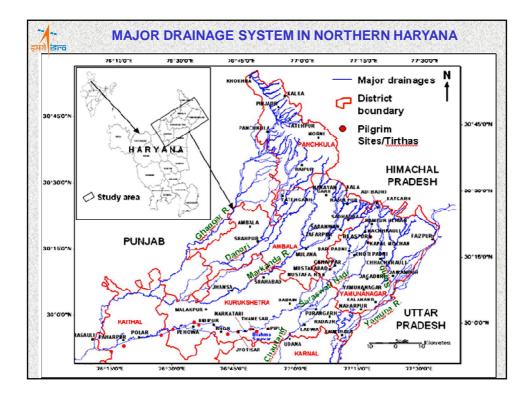


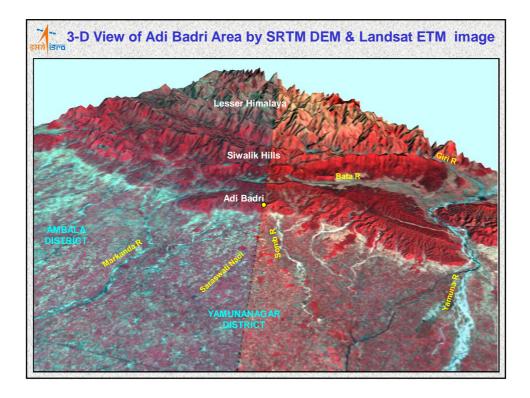


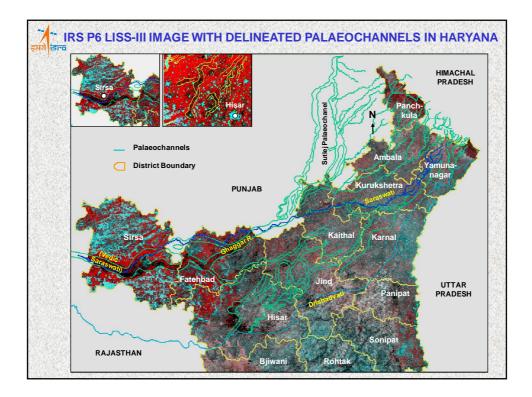


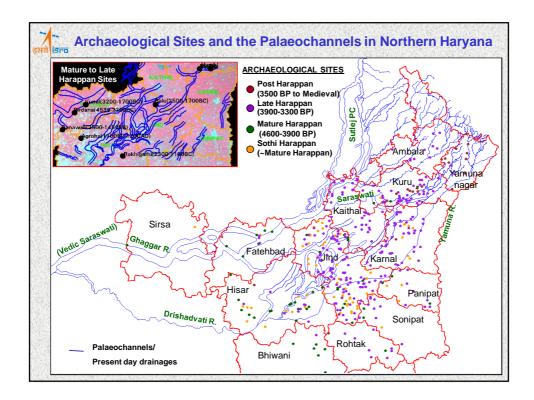


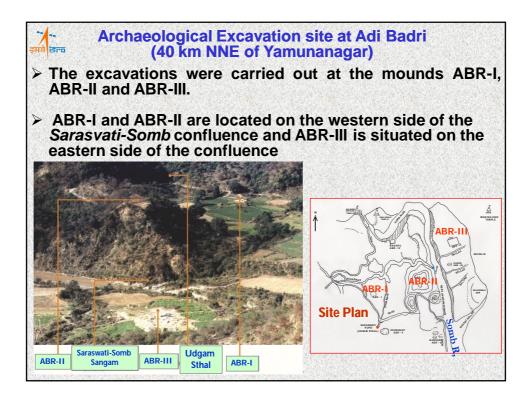


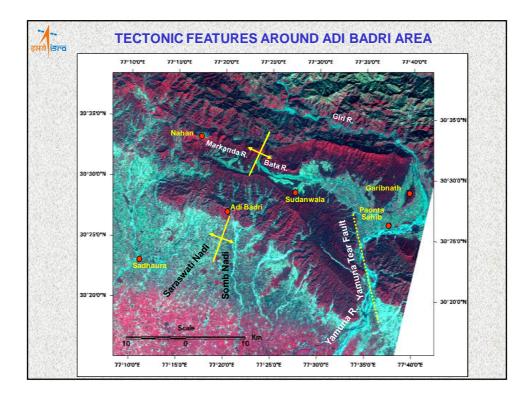

Table – 1 : Data of the tube wells drilled along the palaeo channels in the Jaisalmer district (Source : Ground Water Department, Government of Rejasthan, Jodhpur)								
SI. No.	Drilled Site	Year Of Construction	Yield (lph)	Quality (EC) TDS figs. in brackets	Depth Drilled (m)	Static Water Level (m)	Structure	Aquifer material as observed in lithologe
1	Tanot 3.5 Km from Ghantiyali to Tanot LHS of Road	1999-2000	11250 by compressor	4400 (2650)	125	33	Tubewell	Mainly line grained sand, medium grains at some levels.
2	Ghotaru-i 12.5 Kms Ghotaru to Longewala	1999-2000	13500 by compressor	10800 (6506)	151	43	Tubewell	Medium to coarse sand and gravel Out of main channel
3	Ghotaru – II 14.5 Kms Ghotaru to Longewala	1999-2000	Not Developed	1.440	151	22	•	Fine grained sand -sandslone chips fin grained S.StKankar . Out of main channel
1	Ghotaru – III 10 Kms from Ghotaru to Longewala, RHS of road	1999-2000	2250 by compressor	7200 (4337)	151	48	Tubewell	Fine grained sand -very coarse grained gravely sand
5	Ghotaru – IV 3 Kms from Ghotaru to Longewala. RHS of road	1999-2000	32400 by pump	5900 (3554)	151	45	Tubewell	Medium to fine and coarse grained san
6	Ghotaru – V 150 m NE of Fort	1999-2000	35950 by pump test	2550 (1536)	148	33	Tubeweil	Coarse gravely sands, fine to medium grained sands and occasional clayey sands
7	Ghotaru –VI 1.5 Kms from Ghotaru to Asular, RHS of road	2000-2001	22500 by pump lest	1550 (934)	125	46	Tubewell	Dominantly medium to coarse sands, fi grained and clayey sands at few levels.
8	Dharmi Khu 3 Kms from Kishengarh to Dharmi Khu, RHS of road	2000-2001	35100 by pump test	1700 (1024)	153	40	Tubeweil	Fine and medium grained sands
9	Ranau - 1* Ranau-Tunct Road2 km from Ranau on LHS of road	1996-1999	9120 by compressor	1676 (1010)	102	42	Tubewell	Fine grained sand and sit with kankar; line to medium sand
10	Ranau – II* Close to Ranau village RHS of Tanot road	1998-99	18240 by compressor	1660 (1000)	120	58	Pelzometer	NA.
11	Karthal" Ranau and Tanot road 9.5 km from Ranau LHS of Road	1998-1999	12312 by compressor	2990 (1800)	125	42	Peizometar	Mostly Fine sand
12	Nathura Kua" 4.5 Km from Tanot, 250 m RHS of road	1999-2000	12788 by compressor	4410 (2556)	120	36	Peizometer	Fine grained send and silt with kenter
13	Kuria Bert*	1996-1999	12788 by compressor	2150 (1295)	131	32	Tubewell	Mostly Fine sand
14	Ghanliyail I" 500 m from Ghantiyail Mandir to TanoLLHS of Road	1995-1999	11400 by compressor	3850 (2200)	130	62	Peizometer	Fine grained sand

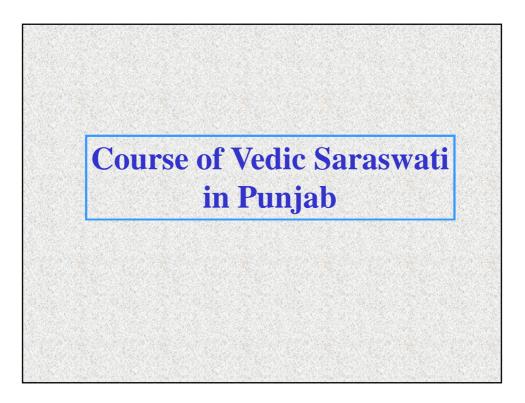

Sample ID	Location	Well Type	Age Uncorrected (Before Past)	Model Age, a (Pearson)-BP
D1	Dharmikua	DW	1900	М
T1	Kishengarh	тw	6190	М
D3	Kuriaberi	DW	4390	1340
D4	Nathurakua	DW	3000	М
T2	Ghantiyali	TW	9630	5550
D5	Ghantiyali	DW	4960	1550
Т3	Ranau	тw	5930	1930
Т7	Ghotaru I	TW	18700	12400
D12	Ghotaru-11	DW	3860	М
D17	Dost Md.Kua	DW	5780	2000

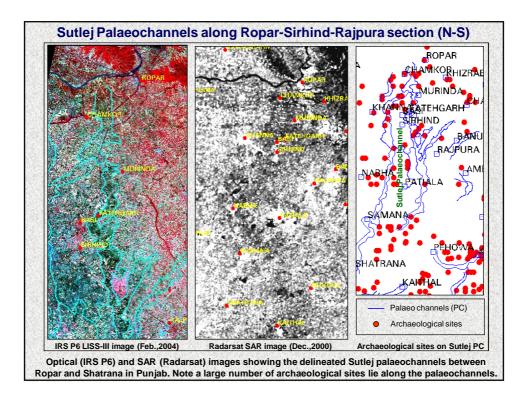

Hydrogeological (Palaeoch		the aquifer Zones almer District (G\	
1. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Zone-A1	Zone-A2	Zone-A3
Formation Material	Alluvial	Alluvial	Alluvial
Area (sq.km)	547	1100	150
Dir. Location	NE part	SW part	SW part
Water Levels(m)	31-62	45-63	39-60
WL fluctuation (m)	0.14	0.02	0.69
Av. Yield (m3ph)		136	22.6
EC (omh m)	1100-4000	2960-4000	1100-4000
Aquif. Thickness(m)	18	14	9
Static GW Reserves (mcm)	590	92	81
Recharge due to RF	Negligible	Negligible	Negligible

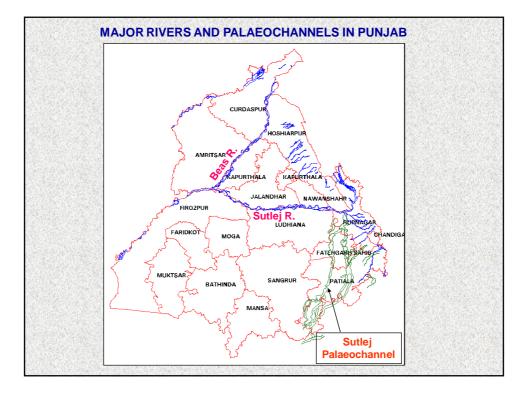


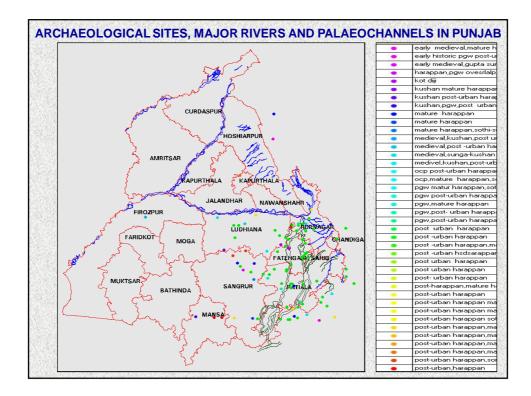


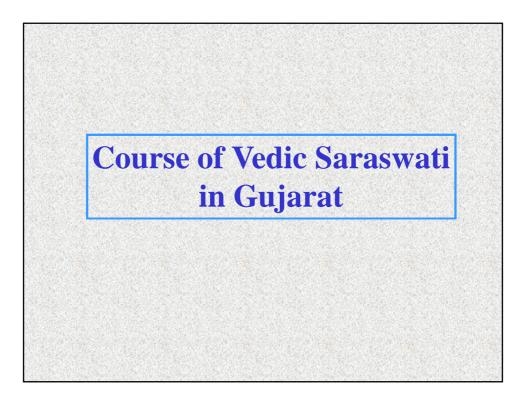


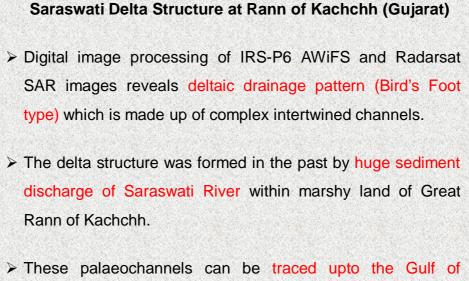


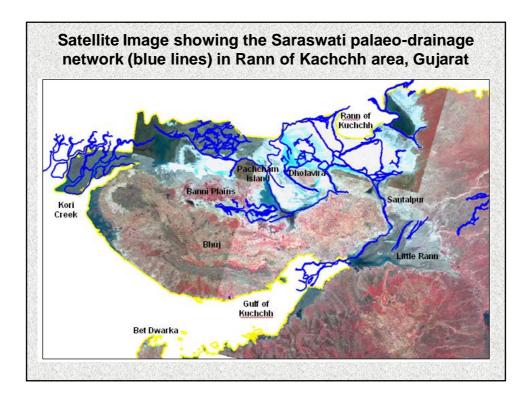


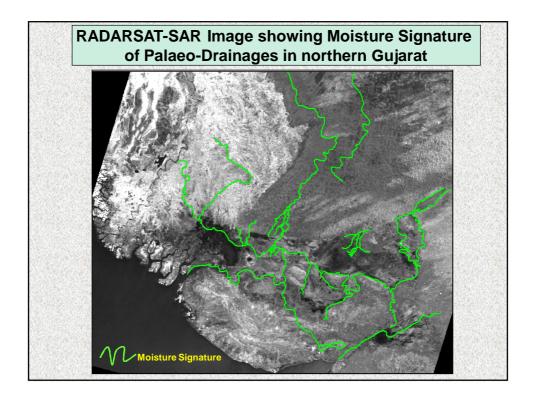


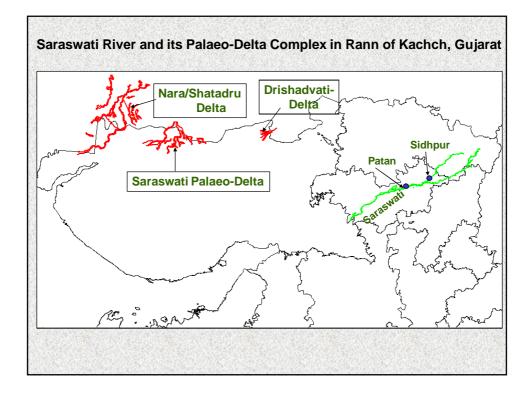


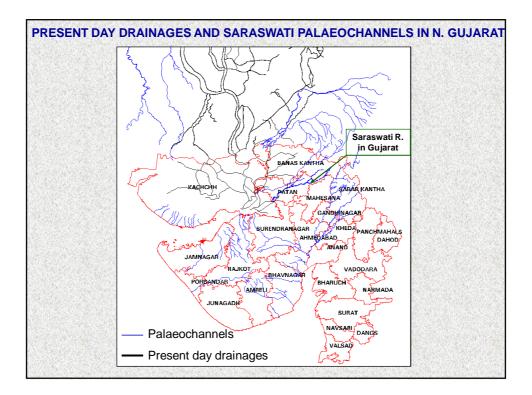


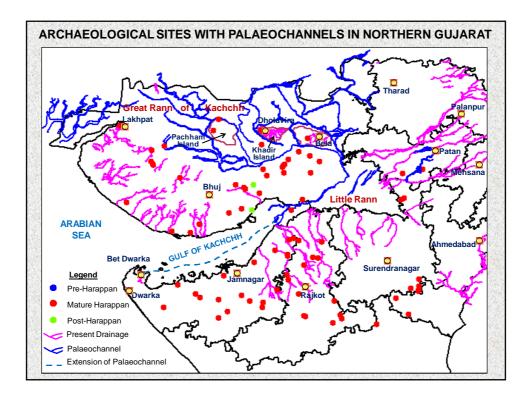


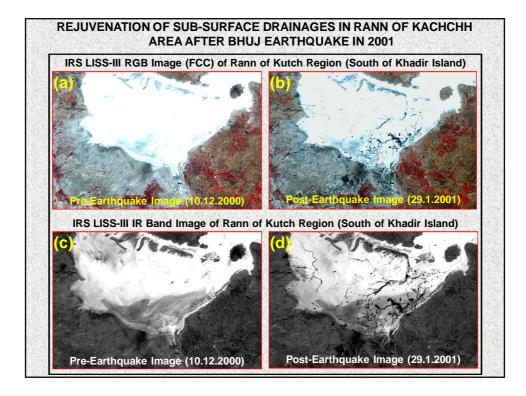


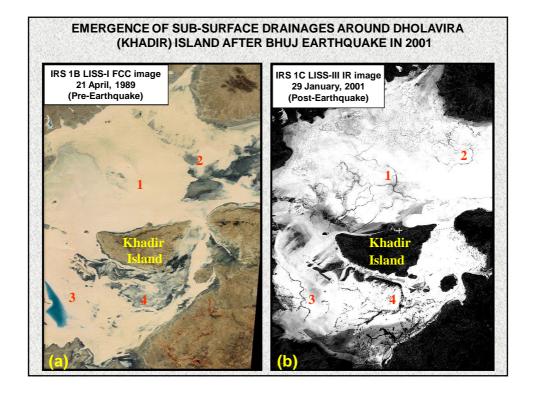


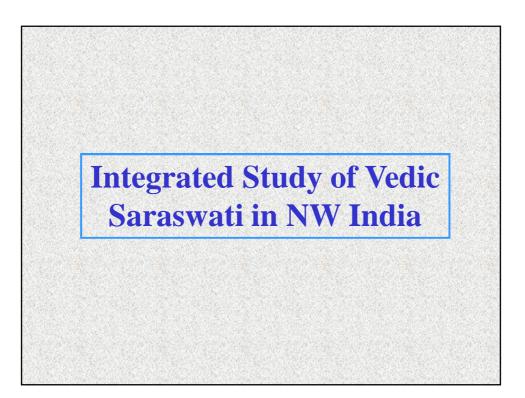


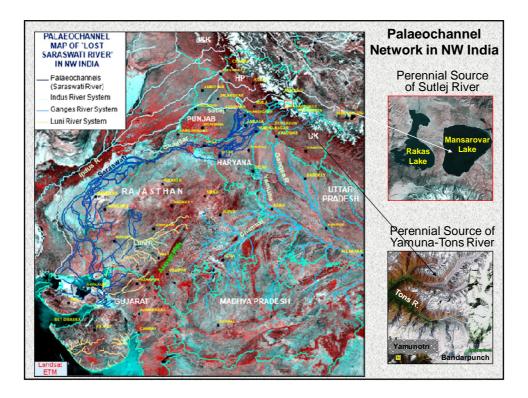


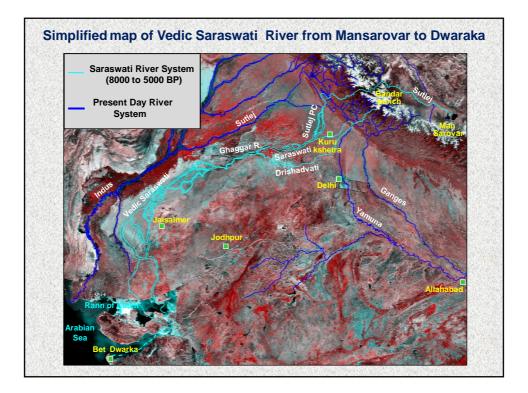

Kachchh which might have a link to the submerged Dwarka of Mahabharata times.

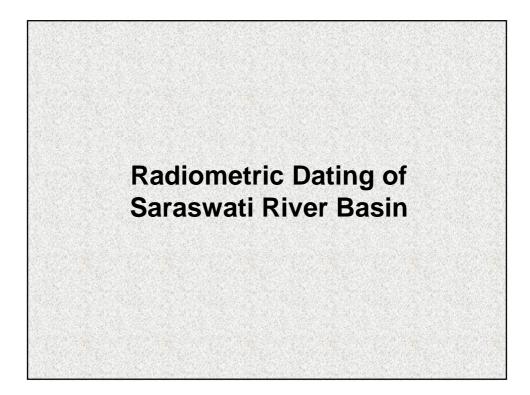








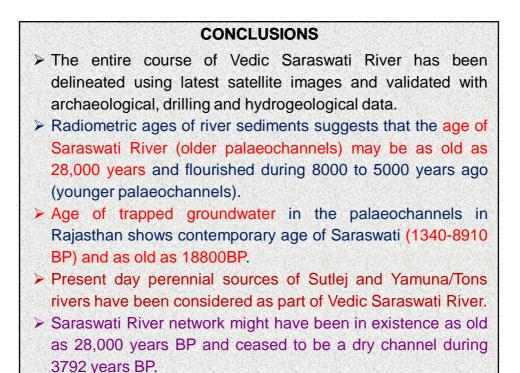



SARASWATI CONFLUENCE AT DWARAKA

- Dwaraka was the capital of the Yadavas which is mentioned in Indian epic Mahabharata. It is believed that Lord Krishna has founded this town by reclaiming 12 yojana land from the Sea at about 3,600 years ago.
- Mahabharata describes that Balaram travelled along the dry banks of Saraswati River from Dwaraka to Mathura. It is possible that Saraswati River might have continued beyond Little Rann upto Dwaraka along the Gulf of Kachchh.
- Archaeological excavation revealed the existence of Harappan settlements in Dwaraka as well as port city of Lothal. Rise in sea level caused submergence of Dwarka in 3443 BP.

	logical Events Related to Saraswati Drainage Evolution in NW In ary Period = Pleistocene in 10000 to 2 million years BP and Hold	
Duration (BP)	Events	References
1.500-3.500	Sea level rise (4-5m). Dwaraka submerged.	Nigam (2012)
< 2,900	Ghaggar-Saraswati drainage system become weak with the beginning of semi-arid climate	OSL dating by Saini et al. (2009)
2,900 - 4,300	Desiccation of the Saraswati channel	OSL dating by Saini et al. (2009)
2,900 - 5,900	Vedic Saraswati Channel buried with relict landform in sub-humid climate. Existence as Saraswati palaeochannels.	OSL dating by Saini et al. (2009)
3,000 - 4,000	Sea level was lower (4-5m). Lothal port dissociated from sea. Land reclamation by Lord Krishna to build Dwaraka city	Nigam (2012)
3,500	Major river diversion of Sutlej and Yamuna	Sinha et al. (2013)
3,500 - 5,000	Major phases of aeolian activities after Holocene Climatic Optimum	TL/OSL dating Singvi & Kar (2004)
3,792	Astronomical dating for Mahabharata War (1792BC)	Ashok Bhatnagar (2014)
< 4,000	Saraswati dwindled and dried up due to river shifting, river piracy.	Sankaran (1999)
4,000 - 7,000	Sea level rise (4-5m). Submergence of Neolithic settlement in Gulf of Khambat	Nigam (2012)
5,000	Continuous flow of Saraswati upto Little Rann	Sankaran (1999)
6,000 - 8,000	Saraswati was in full majesty.	Radhakrishna(1999), Valdiya(2002)
7,000 - 10,000	Sea level was lower (0-30m). Establishment of first Neolithic settlement near Surat in Gujarat coast.	Nigam (2012)
8,670 - 17,000	Groundwater in Jaisalmer region: Medium aquifer (170m) = 9000-17000years	C ¹⁴ dating by Reddy et al. (2011)
10,000	Mighty Himalayan rivers were flowing in western Rajasthan. Sea level was lower (60-80m) than today	Sankaran (1999); Nigam (2012)
10,000 - 18,000	Reduced fluvial activity. Major aeolian activities took place. Aeolian deposition started after LGM.	TL and OSL dating by Singvi and Kar (2004)
1,340 - 18,880	Isotopic age (³ H, ¹⁸ O and C ¹⁴) by BARC. Groundwater in the palaeochannels in Jaisalmer region, Rajasthan	Rao and Kulkarni (1997) Nair et al. (1999).
26,000 - 28,000	Existence of Himalayan-fed channel network/older palaeochannels	OSL dating by Saini et al. (2009)
40.000	Himalayan Rivers originated by melting of glaciers due to warming.	Sankaran (1999); C14 dating by
	Groundwater in deeper aquifer (480m) in Jaisalmer >40.000 years	Reddy et al. (2011)
40000BP-1.7m.y	Himalayan mountains under glacial cover. Climate was fluctuating	Sankaran (1999), Mitra and Bhadu
(Pleistocene)	between glacial and interglacial phases.	(2012)

GEOCHRONOLOGICAL EVENTS OF SARASWATI DRAINAGE EVOLUTION


- Sediments analysis and Optical Stimulated Luminance (OSL) dating of sand (quartz), Saini et al. (2009) suggested a much older palaeochannels (~26000 to 28000 BP) than the Saraswati palaeochannels (2900 to 5900 BP).
- Thermo Luminescence (TL) and Optically Stimulated Luminescence (OSL) dating of sands, Singvi and Kar (2004) interpreted that major aeolian activities took place with reduced fluvial activity during 10,000 - 18,000 BP.
- Isotopic analysis (H³, O¹⁸ and C¹⁴) of groundwater samples along the palaeochannels in Jaisalmer district of Rajasthan by BARC, Mumbai indicates that age of trapped groundwater varies from 1340 to 18880 BP (Rao and Kulkarni, 1997; Nair et al., 1999).
- Recently, groundwater samples were analysed by Reddy et al. (2011) in Jaisalmer district shows

 (a) Groundwater of deeper aquifer > 40,000 years
 (b) Groundwater in medium aquifer = 9000 to 17,000 years.

 Based on foraminifera study, Nigam (2012) advocates that

 (a) Lowering of sea level in 7,000-10,000 & 3,000-4,000
 years which causes dissociation of Lothal dockyard.
 (b) Rise in sea level in 4,000-7,000 & 1,500-3,500 years
 which causes submergence of Neolithic settlement in Gulf of Khambat and Dwaraka in Gulf of Kachchh.

 Himalayan drainage in northwest India was existing more than 40,000 years ago i.e. before the Saraswati civilization.
 Vedic Saraswati River was in full majesty during 6,000-8,000 years.

